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Abstract

Background—Norovirus and rotavirus are prominent enteric viruses responsible for severe 

acute gastroenteritis disease burden around the world. Both viruses recognize and bind to histo-

blood group antigens, which are expressed by the fucosyltransferase 2 (FUT2) gene. Individuals 

with a functional FUT2 gene are termed “secretors.” FUT2 polymorphisms may influence viral 

binding patterns and, therefore, may influence host susceptibility to infection by these viruses.

Methods—We performed a systematic review of the published literature on this topic. Data were 

abstracted and compiled for descriptive analyses and metaanalyses. We estimated pooled odds 

ratios (ORs) for infection using random-effects models.

Results—We found that secretors were 9.9 times (95% confidence interval [CI], 3.9–24.8) as 

likely to be infected with genogroup II.4 noroviruses and 2.2 times as likely to be infected with 

genogroup II non-4 noroviruses (95% CI, 1.2–4.2) compared with nonsecretors. Secretors were 

also 26.6 times more susceptible to infections from P[8]-type rotaviruses compared with 

nonsecretors (95% CI, 8.3–85.0).

Conclusions—Our analyses indicate that host genetic susceptibility to norovirus and rotavirus 

infection may be strain specific. As strain distribution and the proportion of genetic phenotypes 

vary in different countries, future studies should focus on differences in susceptibility among 

various ethnicities. Knowledge of innate susceptibility to rotavirus and norovirus can lead to 

improved understanding of both vaccine performance and individual risk of disease.
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Enteric viruses, specifically norovirus and rotavirus, are a leading cause of diarrheal illness 

worldwide. Rotavirus has been associated with more than 450 000 deaths per year among 

young children, with disproportionately high levels of mortality in Asia and sub-Saharan 

Africa [1]. It is estimated that norovirus is associated with approximately 18% of all cases of 

acute gastroenteritis [2]. In populations with widespread rotavirus vaccination, norovirus has 

been recognized as the predominant cause of acute gastroenteritis in children [3, 4].

Noroviruses are a genetically diverse group of RNA viruses, consisting of at least 6 

genogroups (G) [5]. Two genogroups, GI and GII, are responsible for the majority of human 

illnesses; together, these groups include more than 30 genotypes. Most outbreaks are caused 

by GII.4 noroviruses, which undergo rapid antigenic evolution, giving rise to a new 

predominant strain every 2 to 4 years [6, 7]. Novel GII.4 strains are often associated with 

increased morbidity and mortality [8, 9].There are currently no licensed vaccines available 

for protection against norovirus. However, one vaccine is entering phase III clinical trials, 

and other potential vaccines are in various stages of development [10–12].

Rotaviruses are double-stranded RNA viruses with a genome consisting of 11 segments. 

They are classified according to the genes that code for 2 surface proteins, VP7 (or G, 

glycoprotein) and VP4 (P, protease sensitive) [13]. Gene reassortment of these proteins can 

lead to several strains of rotavirus. However, 3 P-genotypes, P[8], P[6], and P[4], are 

responsible for the majority of human rotavirus infections [13]. Two rotavirus vaccines have 

been licensed and are used throughout the world; both vaccines contain a P[8] component 

[14].

Both norovirus and rotavirus recognize and bind to histo-blood group antigens (HBGA), 

which are oligosaccharides found in the epithelial cells of the gastrointestinal and respiratory 

tracts, as well in saliva and other secretions [15, 16]. The expression of HBGA on the gut 

surface epithelium is controlled by the fucosyltransferase 2 (FUT2) gene, which encodes 

alpha (1, 2) fucosyltransferase in order to generate H-antigens. In turn, H-antigens are 

catalyzed by enzymes to produce A or B blood group antigens. Numerous polymorphisms 

exist on the FUT2 gene; for example, the nucleotide 428 (G > A) nonsense mutation is most 

commonly found in European populations, while a missense mutation found at nucleotide 

385 (A > T) predominantly occurs in Asian populations [17]. Individuals with such 

polymorphisms are known as “nonsecretors” and make up about 20% of the European 

population; the remaining 80% have the functional FUT2 gene and are known as 

“secretors.” Similarly, the FUT3 gene encodes alpha (1, 3) or (1, 4) fucosyltransferase in 

order to generate Lewis antigens [18]. Approximately 6%–8% of the European population is 

Lewis negative compared with about 32% of the African population [19, 20].

Results from challenge and outbreak studies support a correlation between infection with 

norovirus or rotavirus and HBGA phenotypes. Immunity to either virus is suggested to 

occur, to a degree, in a genotype- or strain-dependent manner [21, 22]. Here, we aimed to 
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systematically describe host-genetic associations with the risk of rotavirus or norovirus by 

conducting a metaanalysis of the current literature.

METHODS

We performed a systematic review of the PubMed database to obtain peer-reviewed 

publications reporting data on norovirus or rotavirus cases and their potential association(s) 

with HBGA phenotypes [23, 24]. The full search strategy is detailed in the Supplementary 

Appendix (Supplementary Table 1). Briefly, our search included terms such as “histo blood 

group antigens,” “secretor,” “FUT2,” and other related terminology. Titles and abstracts 

were screened for relevance before assessment of full-text articles. Publications were 

included if they presented data on the number of infected or symptomatic individuals as well 

as uninfected or asymptomatic individuals among any of the following categories: secretor 

status, Lewis phenotype, and ABO blood group. We excluded publications that presented 

secondary data analysis or nonhuman data, those written in a language other than English, 

and those without a control group. We did not restrict our search strategy by study design or 

year of publication; we included all publications identified through 1 December 2014. 

Additional publications were identified through reference lists from included papers.

Data Abstraction and Variable Definition

Data on the following variables were abstracted from each publication, when available: last 

name of first author, title and year of publication, journal name, study type and setting, 

pathogen type (ie, norovirus or rotavirus), race and age of study participants, the specific 

FUT2 mutation under analysis, and the number of cases and controls. When publications 

presented multiple control groups, we compared cases with the pooled controls. Data on the 

number of infected and uninfected individuals were abstracted for the following groups: 

secretors and nonsecretors, Lewis positives and negatives (abstracted by genotype where 

presented), and blood types A, B, O, and AB. Data were stratified by pathogen genotype or 

serotype; studies that presented data on multiple genotypes were represented by multiple 

data lines.

Cases were defined as individuals with a laboratory-confirmed infection of norovirus or 

rotavirus, and controls were defined as those without a laboratory-confirmed infection. 

However, in studies in which norovirus and rotavirus cases were not laboratory tested (ie, 

outbreak summaries), symptomatic illness was considered as a proxy for infection, and 

asymptomatic or unexposed individuals were considered as controls.

Control group data were required for inclusion. However, due to the paucity of data on 

rotavirus, we included data from 1 publication on rotavirus that presented results from 2 

separate study sites, only 1 of which had control group data. For data from the study site 

without control group data, cases infected with 1 strain were compared with cases infected 

with other strains to determine odds of strain-specific infection (eg, P[4] infections were 

compared with P[6] and P[8] infections).

All individuals with FUT2 mutations were grouped as nonsecretors, regardless of the type of 

mutation. Homozygous carriers of the missense mutation found at nucleotide 385 (A > T), 
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commonly recognized as “weak secretors,” were included in the nonsecretor category for 

analytic purposes. Additionally, since the categorization of secretor status varied among 

studies, with most studies presenting data only on secretors and nonsecretors, partial 

secretors (ie, heterozygous individuals) were classified as secretors.

Statistical Analyses

Our primary objective was to determine if the odds of norovirus or rotavirus infection were 

associated with mutations in the FUT2 gene. All publications identified through our 

systematic review were included in the metaanalysis. We estimated pooled odds ratios 

(ORs) for infection (vs no infection) between secretors and nonsecretors by using a random-

effects model stratified by genotype. When calculating ORs for study data that included zero 

individuals in any group, 0.5 was added to all groups in that study. Statistical significance 

was determined by the 95% confidence interval (CI). For analysis of norovirus infections, 

we classified genotypes into the following 3 groups: GI, GII non-4 (not including GII.4), 

and GII.4. For the rotavirus analysis, strains were separated into the following 3 groups 

based on the VP4 gene: P[4], P[6], and P[8]. We assessed the amount of residual 

heterogeneity by calculating the I2 statistic. Publication bias was assessed using Egger’s 

regression test.

We conducted 2 additional analyses to determine the odds of norovirus infection between 

Lewis-positive and Lewis-negative individuals and between individuals with O blood type 

and those with non-O blood types (A, B, and AB). Pooled ORs and 95% CIs for the 

additional analyses were generated through random-effects models.

To examine differences by study design among the norovirus studies, we conducted a meta-

regression analysis that included both genotype and study design. All analyses were 

conducted using the metafor package in R [25, 26].

RESULTS

We identified 72 publications, of which 39 full-text articles were assessed for inclusion 

(Figure 1). In total, 23 publications met our inclusion criteria; almost all were published 

between 2002 and 2014 (2 articles were pending acceptance at the time of our search and 

were subsequently accepted in early 2015) (Supplementary Tables 2 and 3). Of 23 

publications from which data were abstracted, 19 (86%) contained data only on norovirus, 

while 3 (9%) included data on rotavirus and 1 (5%) included data on both viruses. 

Publications included data on a total of 4584 individuals from 12 countries and on age 

groups ranging from children aged <5 years to the elderly. Associations between rotavirus or 

norovirus and secretor status were assessed in 22 studies (96%), with blood group in 10 

studies (46%) and with Lewis phenotype in 5 studies (23%). Of those studies that reported 

associations, 16 (72%), 4 (40%), and 2 (40%) publications reported a significant positive 

association (P < .05) between infection and secretor status, O blood type, or Lewis epitope, 

respectively.
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Norovirus

Overall, among 18 norovirus studies that presented data on associations with secretor status, 

secretors had 4.2 times the odds of infection when compared with nonsecretors (95% CI, 

2.3–7.9; I2 statistic, 73%; Figure 2). Secretors were 9.9 times more frequently infected with 

GII.4 noroviruses (95% CI, 3.9–24.8; I2 statistic, 38%) and 2.2 times more frequently 

infected with GII non-4 noroviruses than nonsecretors (95% CI, 1.2–4.2; I2 statistic, 34%). 

When examined overall, secretors had higher odds of infection with GI (OR, 3.4; 95% CI, .

7–16.7; I2 statistic, 87%) noroviruses, though the effect was nonsignificant. There was 

evidence of publication bias in the norovirus outcome studies taken as a whole (P < .001).

Controlling for genotype, challenge studies were significantly associated with increased 

odds of infection (P < .001). Exclusion of challenge studies from the model did not yield a 

substantial difference among the GII.4 and GII non-4 groups. When challenge studies were 

excluded from the GI group, secretors had lower odds of infection (OR, 0.8; 95% CI, .5–1.3; 

I2 statistic, 0%); this effect was nonsignificant.

Neither blood type O (compared with A, B, or AB blood type; OR, 1.5; 95% CI, .9–2.6; I2 

statistic, 64%; Figure 3) or Lewis-positive individuals (compared with Lewis negative; OR, 

1.1; 95% CI, .6–1.8; I2 statistic, 0%; Figure 4) had greater odds of norovirus infection. No 

evidence of publication bias was found for either analysis.

Rotavirus

Among 4 studies that presented data on associations between rotavirus and secretor status, 

secretors had 4.2 times the odds of infection (95% CI, 1.1–15.8; I2 statistic, 70%) with 

rotavirus overall compared with nonsecretors (Figure 5). Secretors were significantly more 

likely to have P[8] infections than nonsecretors (OR, 26.6; 95% CI, 8.3–85.0; I2 statistic, 

0%). This result was highly consistent for all studies that reported an association between 

secretor status and rotavirus. Secretor status was not significantly associated with 

susceptibility to either P[6] (OR, 0.4; 95% CI, .0–4.1; I2 statistic, 71%) or P[4] (OR, 3.6; 

95% CI, .7–19.6; I2 statistic, 0%) infections. There was no evidence of publication bias in 

the rotavirus studies.

DISCUSSION

Our analysis revealed consistent associations between secretor status and susceptibility to 

both norovirus and rotavirus infection. Secretors had increased likelihood of norovirus 

infection, and this risk was driven by susceptibility to GII norovirus infections, most 

importantly, GII.4 noroviruses. We did not find a significantly increased risk of infection 

with GI noroviruses among secretors. Interestingly, the 2 studies that reported strong 

associations with GI were both GI.1 volunteer challenge studies, supporting the notion that 

GI.1 viruses have secretor-dependent binding properties distinct from contemporary GI 

viruses. When these challenge studies were excluded from the model, the risk of GI 

infection dropped substantially, suggesting that any association between secretor status and 

susceptibility to GI infections overall may be driven by GI.1 noroviruses, which no longer 

commonly cause outbreaks [27]. While there is mechanistic evidence that Lewis phenotype 
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and ABO blood type also play a role in susceptibility to norovirus [16], we did not observe a 

clear association with infection for either. Based on the limited data on rotavirus, we found a 

similarly increased risk of infection for secretor-positive individuals, driven by a 

substantially heightened risk for P[8] rotavirus infection.

Despite the different study designs and populations, we found a good deal of consistency 

between studies. After controlling for genotype in the meta-regression model, only challenge 

studies were significantly associated with increased odds of infection; exclusion of these 

studies did not yield a considerable difference in the effect among the GII.4 and GII non-4 

groups. After accounting for different genotype profiles, most groups had little to no 

heterogeneity, as measured by the I2 statistic. The rotavirus studies had a similar pattern; 

however, studies on P[6] had a significant amount of heterogeneity. More studies on 

associations with P[6] rotavirus would help ascertain susceptibility to this type of rotavirus. 

Some of the observed heterogeneity among both the rotavirus and norovirus studies might 

be explained by variation among ethnicities and associated single nucleotide 

polymorphisms. For example, homozygous carriers of the 385 (A > T) missense mutation 

are considered “weak” secretors, as they express low levels of H-antigen, as opposed to 

“nonsecretors” with the 428 (G > A) nonsense mutation who do not secrete H-antigen. As 

the 2 mutations are different in functionality, they may also cause differences in 

susceptibility to specific strains.

Similarly, there was evidence of publication bias in the norovirus studies when examined as 

a whole. This may suggest that some negative results (ie, studies finding a lack of 

association) are not being published. This has clear implications; in order to develop a 

complete understanding of host susceptibility, data on negative associations with genetic 

predictors are as important as data on positive associations, as they may reveal variation 

among groups such as ethnicity.

Several limitations must be considered in conjunction with our findings. First, the 

publications included in our analysis represented differences in the way infected individuals 

and uninfected individuals were defined. For example, in outbreak studies, symptomatic 

individuals are considered as infected cases, even in circumstances where not all infections 

were laboratory confirmed, and therefore may have been the result of an unrelated etiology. 

Similarly for outbreak studies, the classification of controls may include some who were not 

truly exposed to the virus, as well as those who were infected but were asymptomatic. In 

contrast, challenge studies use both seroconversion as well as detection of viral RNA in 

stool samples to identify cases, resulting in a more sensitive and specific diagnosis for all 

infected individuals, including those who were asymptomatic. Another advantage of 

challenge studies compared with observational studies is that all participants are known to 

have an exposure. Because all participants in challenge studies are exposed to the virus, 

individuals defined as uninfected are truly uninfected.

Second, all of the rotavirus studies are hospital-based and, as a result, may have only 

captured severe illness. Thus, our findings may reflect susceptibility to severe illness, rather 

than susceptibility to infection. To some degree, this might have also impacted the norovirus 

results, though results from community and challenge studies appeared to be consistent.
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Another limitation was the small number of published studies that examined innate 

susceptibility to rotavirus. While we were able to assess susceptibility to norovirus based on 

secretor status, Lewis status, and blood type, we were only able to analyze the relationship 

between secretor status and rotavirus. Additional studies that focus on the association with 

rotavirus are needed to fully assess variations in susceptibility as a result of FUT2 and FUT3 

mutations.

Finally, there was incomplete geographical representation in the studies included in our 

metaanalysis. More than a quarter of the studies we included were conducted in the United 

States, and a similar number originated from European countries. Conversely, there were 

little to no data from Asian populations, specifically those of Polynesian descent, as well as 

Middle Eastern and South Asian populations. Study participants from Central and South 

American countries were also underrepresented; these countries often include large 

indigenous populations.

The lack of wide geographical representation is especially important to the topic of FUT2 

and FUT3 polymorphisms, the proportion of which varies among different ethnicities, 

potentially leading to differences in risk of infection among those populations. Some 

examples include the predominance of the missense mutation at nucleotide 385 (A > T) 

among East Asian populations and of the Lewis-negative phenotype among African 

populations [17, 28]. Notably, one study suggested that a Lewis-negative predominant 

African population in Burkina Faso was naturally protected from P[8] rotavirus infections 

[21]. Since individuals from several regions are underrepresented, we cannot extrapolate our 

results to individuals of all ethnicities, and future research should focus on these populations 

in order to determine to what extent susceptibility based on secretor status may vary among 

different ethnic groups. Research should also include consideration of the interaction 

between enteric bacteria and viruses in determining susceptibility; a recent study 

demonstrated that depletion of intestinal flora significantly reduced murine norovirus titers 

[29].

The results of our analysis suggest the potential for pharmaceutical and other therapeutic 

interventions that block the binding of norovirus and rotavirus to HBGA glycans, which 

would impede the first step of the virus infection process. Studies have shown that human 

breast milk from mothers with the secretor phenotype contains fucosylated oligosaccharides, 

which can act as such a blockade against the binding of norovirus virus–like particles [30, 

31].

These results also have implications for vaccine development and study design. As our 

analysis indicates, some individuals may be protected against infection and, further, may not 

respond to the vaccine. A recent GII.4 norovirus vaccine trial included secretor status as a 

criterion for eligibility in order to ensure susceptibility to the challenge virus [10]. Results of 

vaccine efficacy studies should be interpreted while bearing in mind the proportion of 

individuals in the study population with FUT2 or FUT3 polymorphisms. Differences in 

susceptibility to P[8] rotaviruses may also suggest that nonsecretors respond less well to 

vaccination. However, current evidence shows that both vaccines are effective against 

heterotypic and homotypic strains [32].
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In conclusion, analysis of the existing literature suggests a strong association between the 

FUT2 gene and risk of infection with GII.4 noroviruses and P[8] rotaviruses. Future 

observational studies in Asia and South and Central America and among various ethnicities 

in these regions are needed in order to understand differences in innate susceptibility to 

enteric viruses. Further, it is important to understand the potential contribution of 

commensal bacteria in order to determine susceptibility to these viruses. Understanding 

patterns of susceptibility may be useful for the development of norovirus vaccines and 

therapeutics and the application of both norovirus and rotavirus vaccines among populations 

with an increased or decreased likelihood of infection.
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Figure 1. 
Study selection.
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Figure 2. 
Susceptibility to norovirus infection based on secretor status, by genotype. Studies that 

presented data on multiple genotypes compared with 1 control group were stratified by 

genotype and compared with the same control group. *Challenge studies are denoted with 

an asterisk. Abbreviations: CI, confidence interval; NV+, norovirus positive; NV−, 

norovirus negative; RE, random effects.
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Figure 3. 
Susceptibility to norovirus infection based on blood type. Abbreviations: CI, confidence 

interval; NV+, norovirus positive; NV−, norovirus negative; RE, random effects.
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Figure 4. 
Susceptibility to norovirus infection based on Lewis status. Abbreviations: CI, confidence 

interval; NV+, norovirus positive; NV−, norovirus negative; RE, random effects.
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Figure 5. 
Susceptibility to rotavirus infection based on secretor status, by genotype. †Cases infected 

with 1 strain were compared with cases infected with other strains to determine odds of 

strain-specific infection (eg, P[4] infections were compared with P[6] and P[8] infections). 

Abbreviations: CI, confidence interval; RE, random effects; RV+, rotavirus positive; RV−, 

rotavirus negative.
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